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 To improve the sparsification performance, we propose the adaptive-thresholding 

sparsification strategy, which utilizes SWT and column-based adaptive 

thresholding (CBAT). 

 

 To improve the efficiency, we generate a random-order Bernoulli random matrix 

for each column in the data sampling and develop a new PCS technique. 

 

 To reduce the data loss of carrier image, we introduce the matrix encoding 

technique to embed the secret image to the carrier image. 

 

 Simulation and comparison results demonstrate that our proposed scheme is 

more efficient, and can achieve higher quality of the reconstructed and cipher 

images than some newly developed schemes. 
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Abstract

Recently, some visually secure image encryption schemes using compressive sensing (CS) have been developed to

protect images with visual security, where the images are first encrypted and compressed concurrently, and then

embedded into a carrier image. However, existing schemes have some performance limitations in the quality of the

reconstructed and cipher images and the efficiency. To address above issues, this work proposes a new visually secure

image encryption scheme. First, we devise an adaptive-thresholding sparsification to greatly improve the quality of

the reconstructed image. Second, we design a new parallel CS technique to tremendously improve the processing

efficiency. Further, a matrix encoding strategy is finally employed to significantly reduce the number of changed

bits in embedding process. Simulations and comparisons show that our proposed scheme has a high security level.

Meanwhile, it is also more efficient, and achieves higher quality of the reconstructed and cipher images than some

newly developed schemes.

Keywords: Image security; image compression; separable wavelet transform; parallel compressive sensing.

1. Introduction

As a typical kind of multimedia data, the digital images are widely used to deliver information every moment.

Because a digital image can contain many potential information, it may cause a serious information security incident

when some secret images, e.g. military images, are acquired by unauthorized accesses. Therefore, it is very important

to protect the contents of secret images.5

Among all the technologies of protecting images, the encryption is the most straightforward and effective one [1,

2, 3, 4]. Many image encryption algorithms have been developed and these algorithms can be divided into three

kinds [5, 6, 7, 8]. The first kind only encrypts a plain image to an unrecognizable image with the same size using

different techniques including chaos theory [9, 10, 11, 12], DNA coding [13, 14], quantum transformation [15, 16],

cellular automata [17, 18], domain transformation [19, 20] and etc. However, this kind of algorithms has some obvious10

weaknesses. First, the encryption structures of some algorithms have security defects and thus the encrypted results

have a high risk to be successfully broken [21]. Besides, the cipher images in these encryption algorithms usually have
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the same sizes with the plain images, and this leads to low encryption efficiency. Finally, the generated random-like

cipher images are more likely to attract the attentions of attackers.

The second kind of encryption algorithms encrypts a plain image to be a unrecognizable image with reduced15

size. To concurrently perform image compression and encryption, many researchers have introduced the compressive

sensing (CS) technology into the image encryption [22, 23]. For example, the authors in [24] first compressed a plain

image using the CS, and then encrypted the compressed image by scrambling and diffusing image pixels. To improve

the security level, the authors in [25] further proposed a parallel CS (PCS) technique to resist chosen plain attack.

These encryption algorithms can concurrently compress and encrypt a plain image and thus has wide applications in20

many scenes. However, they also transform plain images to unrecognizable cipher images and this still cannot reduce

the attentions of attackers.

To overcome the weaknesses of the previous two kinds of encryption algorithms, the third kind of encryption

algorithms aims to encrypt a plain image to a cipher image with visual security [26]. These encryption algorithms

usually include two stages: encryption stage and embedding stage. The encryption stage encrypts a plain image to a25

secret image, while the embedding stage embeds the secret image into a carrier image to generate the final visually

meaningful cipher image. For example, the scheme in [27] first encrypts a plain image to an unrecognizable secret

image, and then embeds the secret image into a carrier image by replacing the partial of the carrier image. To reduce

the embedding size, Chai et al. proposed an encryption scheme using CS and discrete wavelet transform (DWT) [28].

In this encryption scheme, a plain image is first compressed using CS, and then encrypted to be a secret image, and30

finally embedded into a carrier image that has the same size with the plain image. To improve the security level

and quality of the reconstructed image, the authors in [29] modified the encryption structure in [28] by introducing a

new CS counter mode and integer wavelet transformation. Although these existing visually secure image encryption

schemes can achieve a relatively high performance, they still have many performance limitations in the quality of the

reconstructed and cipher images, and the processing efficiency.35

To overcome the performance limitations of existing image encryption algorithms, this paper proposes a new

visually secure image encryption scheme using adaptive-thresholding sparsification and PCS. First, a plain image

is decomposed by separable wavelet transform (SWT) [30] and scrambled by the 2D cat map [31]. Secondly, the

scrambled image is sampled using PCS with adaptive threshold for each column, and the measurement matrices for

each column are generated by a chaotic system. Finally, after quantifying and diffusing, the secret image is embedded40

into a carrier image using matrix encoding technique. The contributions and novelty of this paper are summarized as

follows:

• To improve the sparsification performance, we propose the adaptive-thresholding sparsification strategy, which

utilizes SWT and column-based adaptive thresholding (CBAT).

• To improve the efficiency, we generate a random-order Bernoulli random matrix for each column in the data45

sampling and develop a new PCS technique.
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• To reduce the data loss of carrier image, we introduce the matrix encoding technique to embed the secret image

to the carrier image.

• Simulation and comparison results demonstrate that our proposed scheme is more efficient, and can achieve

higher quality of the reconstructed and cipher images than some newly developed schemes.50

The rest of this paper is organized as follows. Section 2 introduces some related works and preliminaries. Section 3

presents the proposed visually secure encryption scheme. Section 4 simulates the proposed scheme and analyzes its

performance. Section 5 evaluates the security of the proposed scheme and compares it with some recently developed

schemes. Section 6 gives a conclusion of this paper.

2. Related Works and Contributions55

This section first introduces the CS theory, and then analyzes some representative visually secure encryption

schemes using CS, and finally presents some techniques that are used to design new encryption scheme in Section 3.

2.1. CS Theory

The CS theory specifies that when sampling a sparse signal below the Nyquist rate, the original signal can be well

recovered from the sampled data [32, 33]. It tells that a sparse signal can be represented by some projections that are60

far smaller than the original signal. Suppose a sparse signal x is of size N × 1 and a measurement matrix Φ is of size

M × N (M � N), the sample process can be defined as

y = Φ · x, (1)

where y is the measurement vector with size M × 1. The compression ratio (CR) is defined as CR = M/N. Usually, a

natural signal is not sparse. To deal with a natural signal using CS theory, we first transform the signal into a frequency

domain to get its sparse representation and then perform the CS to the obtained sparse signal. Thus, for a natural signal65

s, the sample process can be defined as

y = Φ ·Ψ · s = Φ · x, (2)

where Ψ is a sparse transformation matrix and x is the sparse representation of signal s.

The sparse signal x is called K-sparse when it has K non-zero entries. To completely recover the original signal,

the variables K, M and N should meet M = O(K log2(N/K)) [32, 33] and the measurement matrix Φ should satisfy

the restricted isometry property (RIP) [34]. When recovering the original signal, the estimation of x, denoted as x̂,70

can be calculated by solving the following optimization problem

min ‖x̂‖0 s. t. y = Φ · x̂, (3)

where ‖ · ‖0 denotes the l0-norm. However, l0 optimization problem is NP-hard and thus l0-norm is usually replaced

by l1-norm. Recently, researchers have proposed many effective reconstruction methods, including the orthogonal

matching pursuit (OMP) [35] and smoothed l0 norm (SL0) [36].
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2.2. Visually Secure Image Encryption Using CS75

Many visually secure image encryption schemes have been developed using CS![28, 37, 29]. These algorithms

first encrypt a plain image to be a secret image with reduced size, and then embed the secret image into a carrier image

to generate a cipher image. Fig. 1 presents a general framework of these algorithms, and the whole encryption scheme

is divided into three stages: sparsification, compressive sampling and embedding.

Plain image

Carrier image Cipher image

Stage 2 Compressive Sampling

Stage 1 Sparsification

Stage 3 Embedding

Sparse image

Secret image

Figure 1: A general framework of the visually secure image encryption schemes using CS.

The sparsification is to transform a natural image to be a sparse signal before sampled. One of the most effective80

method is to transform the image from spatial domain to frequency domain using some techniques such as the wavelet

transform and Fourier transform. Since a digital image has much data redundancy, its frequency spectrum has many

elements that are close to 0. After setting these elements to 0 via quantifying with a threshold, a sparse signal can be

generated. The compressive sampling compressively samples the sparse image to reduce the image size. According

to the CS theory in Eq. (1), a measurement matrix is required when compressively sampling a sparse image. To solve85

the low security level of the secret image caused by a fixed measurement matrix for the whole sparse image [25],

researchers usually use changeable measurement matrices generated by a chaotic system. After compressive sampling,

a secret image is generated and then embedded into a carrier image to obtain visually meaningful cipher image.

Usually, a pre-processing is performed to the carrier image to further improve the embedding space or reduce the data

loss.90

2.3. Our Contributions for New Scheme

We devise some new techniques to improve the quality of the reconstructed and cipher images and efficiency.

2.3.1. Adaptive-thresholding sparsification

To improve the sparsification performance, an adaptive-thresholding sparsification strategy is introduced and it

includes three operations: SWT, matrix confusion, and CBAT. The SWT is used to decompose the plain image to get95

its sparse representation in wavelet domain. First, the orthogonal wavelet transform matrix is calculated as

Ψ = LnLn−1 . . .L2L1, (4)
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where the Li (i = 1, 2, . . . , n) of size N × N is calculated as

Li =




H(N/2i)×(N/2i−1)

G(N/2i)×(N/2i−1)

 0

0 I


, (5)

where H and G are the low and high pass filters of the wavelet base, respectively. The maximum value of i is blog2(N)c
(b·c is to obtain the biggest integer that is not bigger than ·) and I is an identity matrix. Besides, the DWT and wavelet

packet transform (WPT) are also widely used to decompose an image. However, the DWT has high processing100

efficiency but low sparsification performance, while the WPT has high sparsification performance but low processing

efficiency. The SWT can well balance the trade-off between the performance and efficiency. Fig. 2 shows the 2-layer

decomposition of the DWT, SWT and WPT. It is obvious that the SWT can better separate the high-frequency part

and low-frequency part of an image than the DWT. Thus, it can achieve better sparsfication performance.

LL2 HL2
HL1

LH2 HH2

LH1 HH1

(a) DWT

LL2 HL2 L2

LH2 HH2 H2

L2 H2 HH1

(b) SWT

LL2 HL2 LL2 HL2

LH2 HH2 LH2 HH2

LL2 HL2 LH2 HL2

LH2 HH2 LH2 HH2

(c) WPT

Figure 2: The 2-layer decomposition of an image using DWT, SWT and WPT.

After image decomposition by SWT, the elements in the coefficient matrix are divided into the principal and105

secondary components. The matrix confusion randomly shuffles the elements in the coefficient matrix such that the

principal components can be uniformly distributed in each column. Different matrix confusion methods can be used

to confuse the coefficient matrix, and the selection of confusion methods cannot affect the reconstruction quality. In

our algorithm, we use the 2D cat map to shuffle the coefficient matrix since it is easy to be implemented and can obtain

good confusion performance.110

Finally, the CBAT is proposed to adaptively set thresholds for different images. Previous works usually set a

global threshold and the pixel values smaller than the threshold are set to zero. However, since different images have

different features, setting a fixed global threshold to all the images may lead to unstable performance. To solve these

problems, we propose an adaptive method to directly set the sparsity for every column of image rather than set a

threshold. In this case, the sparsity is fixed for every column, which can lead to a stable result. For a compression rate115

CR and column length N, we empirically set the sparsity of a column as

K = bθ · ω ·CRω · e−θ·CRω · Nc, (6)
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where θ and ω are determined by the reconstruction method. Then the threshold for a column is the K-th largest

absolute value in the column. The elements whose absolute values are smaller than the threshold will be set to zero.

Note that the sparsity calculated by Eq. (6) may not ensure a best reconstruction quality for every image. However,

this method can offer a simple way to dynamically set the thresholds for different images and avoid the unstable120

performance caused by a global threshold.

2.3.2. Chaos-Based Measurement Matrices

According to the discussions in [34], the measurement matrix in the CS should satisfy the restricted isometry

property. A Bernoulli random matrix has the high probability to satisfy the restricted isometry property [38] and the

chaotic matrix generated by the Logistic map is the Bernoulli random matrix [39]. In this work, we use the Logistic125

map to generate Bernoulli random matrix. The Logistic map is defined as

xn+1 = F(xn) = µ ∗ xn ∗ (1 − xn), xn ∈ [0, 1], (7)

where the control parameter µ ∈ [3.57, 4].

To generate C measurement matrices with size M×N, a chaotic matrix W with size M×2N is firstly generated by

iterating the Logistic map with the given initial state (x0) and quantifying the elements of generated chaotic sequence

into 1 or -1 by the equation130

ti = Ω(xi) =



−1, xi ≤ 0.5

1, xi > 0.5.
(8)

Then, each of the C measurement matrices can be generated by randomly selecting N columns from W according to

the chaotic sequences. Algorithm 1 shows the generation of the C measurement matrices Φ1,Φ2, · · · ,ΦC .

2.3.3. Matrix Encoding Embedding

To achieve a better embedding performance, the matrix encoding [40] is introduced to embed the secret image

into carrier image. Using more bits, the matrix encoding can represent a number of information bits with acceptable135

data loss. It can be described using a triple (n, k, t), where n is the representing bit number, k (k ≤ n) is the bit number

to be represented and t is the maximum changed bit number. Suppose that a codeword b = {b1b2 . . . bn} is the bits that

can be changed in a block, x = {x1x2 . . . xk} contains the secret bits and b′ = {b′1b′2 . . . b
′
n} is the modified codeword

having embedded secret bits. Then the encoding process can be described as

Step 1: A function f is defined as140

f (b) = (b1 × 1) ⊕ (b2 × 2) ⊕ · · · ⊕ (bn × n) = x̂, (9)

where ⊕ means bitwise xor operation.

Step 2: Find the position where the bit needs to be changed by

s = f (b) ⊕ x (10)

6

                  



Algorithm 1: Generation of the C measurement matrices.
Input: Initial state (x0), the number of measurement matrix C and matrix size M × N.

Output: C measurement matrices Φ1,Φ2, · · · ,ΦC .

1 Generate chaotic sequences S = {x1, x2, · · · , x2MN+2CN} using the Logistic map with (x0);

2 Convert elements of S(1 : 2MN) into 1 or -1 by Eq. (8);

3 Initialize W = S(1 : 2MN) and rearrange W as size M × 2N in row order;

4 Initialize P = S(2MN + 1 : 2MN + 2CN) and rearrange P as size C × 2N;

5 Initialize Φ1,Φ2, · · · ,ΦC ∈ RM×N ;

6 for i = 1 : C do

7 [P′, I] = SortI(P(i, :)) {Sort the i-th row and I is the index vector.};
8 for j = 1 : N do

9 Φi(:, j) = W(:, I( j));

10 end

11 end

Step 3: The rule to change the codeword b is illustrated as

b′ =



b, s = 0

{b1, b2, . . . , 1 − bi . . . , bn}, s = i
(11)

Replace b by b′.

Step 4: Repeat Step 1 to Step 3 until f (b) = x.145

In this paper, the matrix encoding with (n = 3, k = 2, t = 1) is used to embed a secret image into a carrier image.

This means that we embed two bits of the secret image into the least three significant bits of a pixel in the carrier

image, since the least significant bits contain less information. For example, suppose the two bits to be embedded is

x = {10} and a pixel in the carrier image is {10010110}. Then the least three significant bits are b = {110}. Following

Eq. (9), we first calculate that f (b) = (1 × 1) ⊕ (1 × 2) ⊕ (0 × 3) = {11}. Since f (b) , x, we calculate the position150

needed to be changed is s = f (b) ⊕ x = {11} ⊕ {10} = 1. Thus, we change the first bit of b to obtain b′ = {010}. Then

f (b′) = (0× 1)⊕ (1× 2)⊕ (0× 3) = {10}. Because f (b′) = x, the embedding process is finished and the modified pixel

of value {10010010} is obtained by replacing b with b′. In the data extraction stage, the embedded two bits can be

extracted by calculating f (b′) = {10}. Besides, the 2D Logistic-adjusted-Sine map (2D-LASM) introduced in [41] is

used to generate chaotic sequences, which will be used to control the embedding order to further improve the security.155

The 2D-LASM is defined as 

xi+1 = sin(πµ(yi + 3)xi(1 − xi)),

yi+1 = sin(πµ(xi+1 + 3)yi(1 − yi),
(12)

where the parameter µ ∈ [0, 1] and (x0, y0) are initial values.
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3. Visually Secure Image Encryption Scheme

In this section, we present a new visually secure image encryption scheme. In the encryption process, the plain

image is first encrypted to be a secret image, which is then embedded into a carrier image to get the visually meaningful160

cipher image. Fig. 3 shows the structure of the proposed encryption scheme. It includes two stages: encryption and

embedding. In the encryption stage, the SWT is used to decompose the plain image, the 2D cat map is used to

randomly shuffle the pixels, and the CBAT is to generate sparse image, ensuring that each column has the same

number of zero. The secret key generates the initial states, which are employed by the chaotic maps to generate the

measurements matrices, and the parameters in diffusion and matrix encoding. The PCS sampling is performed to the165

sparse image in the column-wise manner. After performing the quantification and diffusion to the sampling result, a

secret image can be obtained. In the embedding stage, the matrix encoding technique embeds the secret image into a

carrier image under the control parameters generated by the 2D-LASM. In the decryption process, the secret image

is first extracted from the cipher image, and then decrypted to obtain the plain image. The decryption scheme is the

combination of the inverse operation of the encryption scheme and its structure is shown in Fig. 4.170

Matrix encoding

Measurement
matrices

Column-based 
adaptive thresholding

Secret image

SWT

2D-LASM

cat map based
confusion

PCS sampling

Stage 1: Encryption

Quantification 
and diffusion

Stage 2: Embedding
Carrier image

Plain image

Cipher image

Secret key
Logistic map

Figure 3: The structure of the proposed visually secure image encryption scheme.

Extracting

Stage 2: Reconstruction

Stage 1: Extracting

Secret Image

Inverse quantificationReconstructionInverse SWT

2D-LASM

Inverse 2D cat map

Measurement
matrices Inverse Diffusion

Reconstructed 
image

Cipher image

Secret key
Logistic map

Figure 4: The structure of decryption scheme.
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3.1. Secret Key

The secret key K is composed of 256 bits and it is used to generate the initial states of the Logistic map and 2D-

LASM. The secret key should be transmitted over a secure channel or some public key encryption algorithms such as

the well-known RSA. Firstly, a hash function SHA-256 is performed to the secret key to enhance the security level,

and the hashed result contains six parts, namely K′ = {x0, y0, µ, γ1, γ2, γ3}, where (x0, y0, µ) are the original initial175

states, (γ1, γ2, γ3) are interference parameters. Algorithm 2 details the generation procedures of the initial states for

the chaotic maps. Three groups of initial states (x(1)
0 ), (x(2)

0 , y(2)
0 , µ(2)) and (x(3)

0 , y(3)
0 , µ(3)) can be obtained, and they are

used in generating the measurement matrices, and the parameters in diffusion and matrix encoding, respectively.

Algorithm 2: The generation of the initial states for chaotic maps.
Input: Secret key K with length of 256 bits.

Output: Initial states (x(1)
0 ), (x(2)

0 , y(2)
0 , µ(2)) and (x(3)

0 , y(3)
0 , µ(3)).

1 K′ = SHA256(K);

2 x0 = (
∑64

i=1 K′[i] × 2i−1)/264;

3 y0 = (
∑128

i=65 K′[i] × 2i−65)/264;

4 µ = (
∑192

i=129 K′[i] × 2i−129)/264;

5 γ1 = (
∑213

i=193 K′[i] × 2i−193)/221;

6 γ2 = (
∑234

i=214 K′[i] × 2i−214)/221;

7 γ3 = (
∑256

i=235 K′[i] × 2i−235)/222;

8 x(1)
0 = ((x0 + x0 × 25 × γ1) mod 1) + 10−5;

9 for i = 2 : 3 do

10 x(i)
0 = ((x0 + x0 × 2i×5 × γi) mod 1) + 10−5;

11 y(i)
0 = ((y0 + y0 × 2i×5 × γi) mod 1) + 10−5;

12 µ(i) = ((µ + µ × 2i×5 × γi) mod 0.4) + 0.5;

13 end

3.2. Encryption and Reconstruction

Here, we describe the encryption process in the forward operation, and the related reconstruction process in the180

backward operation. Suppose the plain image P to be encrypted is of size N × N. The detailed steps are described as

follows:

Step 1: Apply the SWT introduced in Section 2.3.1 on P and the generated coefficient matrix P1 with size N × N

is calculated as

P1 = Ψ × P ×ΨT , (13)

9

                  



where Ψ is the orthogonal wavelet matrix computed by Eq. (4) with layer blog(N) c. The inverse operation to recover185

the plain image P is

P = ΨT × P1 ×Ψ. (14)

Step 2: The 2D cat map randomly shuffles the pixel positions of the image P1, and it is defined as

x′

y′

 =


1 a

b ab + 1




x

y

 mod N, (15)

where (x, y) is a pixel position in the original image and (x′, y′) is a pixel position in the shuffled image, a and b are

two parameters. Iterate the image P1 c times using the 2D cat map to obtain a totally shuffled image P2. Note that the

a, b and c are three parameters that can affect the reconstruction quality. The image P1 can be recovered from P2 by190

iterating the inverse 2D cat map c times using the same parameters, and the inverse 2D cat map is define as

x

y

 =


ab + 1 −a

−b 1




x′

y′

 mod N. (16)

Step 3: Predefine the compression ratio of the plain image as CR. Apply the CBAT presented in Section 2.3.1

to P2 to obtain the sparse image. Generate N measurement matrices, Φ1,Φ2, · · · ,ΦN , using the Algorithm 1, where

M = N ×CR and the initial state for the Logistic map is x(1)
0 .

Step 4: The i-th measurement matrix Φi is used to sample the i-th column of P2 using the PCS. Then the com-195

pressed image P3 with size M × N is generated. The image P2 can be reconstructed from P3 via different CS

reconstruction methods.

Step 5: Quantify the pixel values of P3 to be integer of range [0, 255] to generate the quantified matrix P4. The

quantification process is calculated as

P4 =

〈
P3 − Pmin

Pmax − Pmin
× 255

〉
, (17)

where Pmin and Pmax are the minimum and maximum values of P3, respectively, and 〈·〉 is to get the nearest integer.200

After the quantification, an image P4 with integer pixel value is obtained. The inverse operation of quantification is

defined as

P3 =
P4 × (Pmax − Pmin)

255
+ Pmin. (18)

Step 6: A diffusion operation is developed to randomly change the pixel value and spread the little change to

the whole image. Specifically, a chaotic sequence X = {xi}MN
i=1 is generated by the 2D-LASM with initial state

(x(2)
0 , y(2)

0 , µ(2)). Then convert the sequence X into integers V = {v1, v2, · · · , vMN} using the following operation205

vi = 〈xi × 230〉 mod 256. (19)

Let P4i and si donate the ith element of P4 and the ith element of the secret image S. Then si can be calculated by

si =



P4i ⊕ vi i = 1

P4i ⊕ vi ⊕ si−1 i > 1
. (20)
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Reshape the S with size M × N to obtain the secret image. The inverse operation is

P4i =



si ⊕ vi i = 1

si ⊕ vi ⊕ si−1 i > 1
. (21)

3.3. Embedding and Extracting

After the plain image is encrypted to a secret image, the secret image is then embedded into a carrier image to

further enhance the security level. Then a visually secure cipher image can be obtained by embedding the secret image210

S into the carrier image Q. Suppose the size of the carrier image is M2 × N2. To completely recover the secret image,

the sizes of the carrier image and the secret image should satisfy that

M2 × N2 ≥ M × N × 4. (22)

In the embedding, two chaotic sequences X = {x1, x2, · · · , xM2N2 } and Y = {y1, y2, · · · , yM2N2 } are generated using

the 2D-LASM with the initial state (x(3)
0 , y(3)

0 , µ(3)). Select the last 4MN elements of Y to form another sequence

Y′ = {y′1, y′2, · · · , y′4MN}. Sort the sequence X and Y′ in increasing order to generate two index vectors Ix and Iy. Then215

rearrange the secret image S as a vector {s1, s2, · · · , sMN}. By decomposing each pixel into 8 bits, a binary matrix

with size MN × 8 can be generated, and it is rearranged as S′ with size 4MN × 2. Finally, the binary matrix S′ can

be embedded into the carrier image Q using matrix encoding under the control of Ix, and Iy. Algorithm 3 shows the

pseudo-code of embedding the secret image S into the carrier image Q using the matrix encoding technique.

Algorithm 3: The procedure of embedding a secret image into a carrier image.
Input: The secret image S with size M × N, the carrier image Q with size M2 × N2, the index vectors Ix and Iy.

Output: The visually secure cipher image C.

1 Decompose each pixel of S into 8 bits, and rearrange its size to obtain a binary matrix S′ with size 4MN × 2;

2 Decompose each pixel of Q into 8 bits, and rearrange its size to obtain a binary matrix Q′ with size M2N2 × 8;

3 for i = 1 : 4MN do

4 x = Ix(i) and y = Iy(i);

5 a = [Q′(x, 6) · 1] ⊕ [Q′(x, 7) · 2] ⊕ [Q′(x, 8) · 3];

6 b = a ⊕ [S′(y, 1) · 2 + S′(y, 2)] (b ∈ [0, 3]) ;

7 if b! = 0 then change Q′(x, b + 5)

8 end

9 Convert each row of Q′ to be a decimal integer;

10 Rearrange Q′ to obtain the cipher image C with size M2 × N2.

Using the inverse operation of matrix encoding, the secret image S can be completely extracted from the cipher220

image C using the same index matrices Ix and Iy.
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3.4. Discussion

Because many effective techniques are introduced in our proposed scheme, the scheme is able to protect a plain

image with a high security level and achieves many advantages.

First, the compression ratio and reconstruction quality of the original image can be greatly enhanced, due to the225

adaptive-thresholding sparsification. The SWT can decompose the plain image with high sparsification performance

and processing efficiency, the generated measurement matrices can well satisfy the RIP, and the CBAT can ensure that

every column of an image has the same sparsity and can be reconstructed with acceptable data loss. Thus, one can

exactly set the compression ratio to the original image and obtain a high-quality reconstructed result.

Second, the cipher image can achieve high quality and has a similar data loss for different carrier images using the230

matrix encoding. Suppose the carrier image I and cipher image C are with size M2 × N2, and the size of the secret

image to be embedded is M2 × N2/4, which is maximum value of satisfying the requirements of matrix encoding in

Eq. (22). According to the embedding process described in Algorithm 3, the matrix coding is directly applied on bit

level and cannot change the number of bits. Thus, this operation cannot cause data overflow. Meanwhile, each pixel in

I has the same 25% probabilities to change one of its last three bits, or keep no change. This indicates |I(i, j)−C(i, j)|235

can be 0, 1, 2, and 4 with the same 25% probabilities. Then the difference between the carrier image and the cipher

image, denoted by the Peak Signal Noise Ratio (PSNR) [42], can be obtained as

PS NR = 10 × log10


2552 × M2 × N2∑M2

i=1

∑N2
j=1(I(i, j) − C(i, j))2



= 10 × log10


2552 × M2 × N2∑M2

i=1

∑N2
j=1 0.25 × (02 + 12 + 22 + 42)



≈ 40.9292.

(23)

This theoretically demonstrates that the embedding process has greatly high performance and the cipher image has

few data loss compared with the carrier image.

Third, the scheme can well balance the trade-off between the size of the carrier image and the compression ratio240

CR. From Eq. (22), one can obtain that when the size of the carrier image is fixed, the compression ratio has a

maximum value. Thus, one is flexible to set the compression ratio and the size of the carrier image. Besides, because

the embedding process is a completely reversible operation, the secret image can be completely extracted from the

cipher image without data loss.

Finally, the proposed scheme can protect the plain image with a high security level. This is because the PCS245

sampling, diffusion and matrix encoding are all under the control of the chaotic sequences generated by chaotic maps.

Thus, the cipher image has a high security level and can resist the commonly used security attacks.
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4. Simulation Results and Analysis

This section simulates the proposed visually secure image encryption scheme and analyzes its performance. To

show a relatively fair simulation result, ten classical and widely used images are tested in our experiments and these250

images include “Brain”, “Finger”, “Girl”, “Bridge”, “Barbara”, “Peppers”, “Lena”, “Jet”, “Airplane”, and “Baboon”.

The former two images have the size of 256 × 256, while the latter eight images have the size of 512 × 512. The

proposed scheme is implemented using Matlab R2020a in a macOS Catalina 10.15.6 Operation system.

4.1. Simulation Results

This subsection simulates the proposed scheme using different images as the plain images and carrier images. The255

secret key is randomly generated as K = 9768A057A8159D63E6996CC6B23CB8C6D056BA0152D3F884F9B4B5

F6147B33DB, the filter used in SWT is the sym8, parameters in 2D cat map are set as (a, b, c) = (2, 3, 13), the

compression ratio CR is set as 0.25 and the reconstruction method in PCS is the SL0 with parameters θ = 0.3445 and

ω = 1.404 for the CBAT.

Fig. 5 shows the simulation results and each column is an individual experiment. Because the compression ratio260

CR = 0.25, the secret images are the 25% large as the plain image and they are noise-like. After embedding the secret

images into the carrier images, the generated cipher images have the same visual effects with the carrier images. This

can well protect the secret images because the meaningful images can greatly reduce the attentions of the attackers.

Because the embedding process is completely invertible and the reconstruction of PCS has high performance, the

reconstructed images have high quality and visually same effects with the plain images.265

To qualitatively assess the performance of our proposed scheme, we use the PSNR presented in Eq. (23) and mean

structural similarity (MSSIM) [43] to measure the quality of cipher images and reconstructed images. The MSSIM is

to qualitatively describe the structural similarity of two images. The MSSIM of two images X and Y can be calculated

by

MS S IM(X,Y) =
1
M

M∑

k=1

SSIM(x, y). (24)

The structural similarity (SSIM) is calculated by270

S S IM(x, y) =
(2µxµy + (k1 × L)2)(2σxy + (k2 × L)2)

(µ2
x + µ2

y + (k1 × L)2)(σ2
x + σ2

y + (k2 × L)2)
, (25)

where M is the number of image block, k1 and k2 are two parameters, L is the grayscale level and L = 255 for 8-bit

grayscale image, x and y are blocks of images X and Y, respectively, µi and σi (i = x, y) are the average and variance

values of block i, respectively, σxy is the covariance of blocks x and y. According to the recommendation in [43], we

set k1 = 0.01, k2 = 0.03 and M = 64.

Table 1 shows the PSNR and MSSIM test results. As can be seen, all the PSNR values between the cipher275

and carrier images are above 40.9 dB and all the MSSIM values are above 0.99. This demonstrates that the cipher

images have high similarity with the carrier images. Besides, all the reconstructed images also achieve high PSNR
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(a) (b) (c) (d) (e)

Figure 5: Encryption and decryption results. The five rows from top to bottom are the plain images, secret images, carrier images, cipher images

and reconstructed images, respectively.

Table 1: The PSNR and MSSIM values between the cipher and carrier images, and between the reconstructed and plain images.

Plain Carrier Cipher images Reconstructed images

images images PSNR(dB) MSSIM PSNR(dB) MSSIM

Brain Finger 40.9328 0.9967 37.9061 0.9481

Girl Bridge 40.9295 0.9974 37.4035 0.9683

Barbara Peppers 40.9310 0.9917 30.3344 0.9381

Lena Jet 40.9186 0.9945 35.3992 0.9658

Airplane Baboon 40.9187 0.9968 34.6182 0.9579
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and MSSIM values from the plain images, and this indicates that the reconstructed images have good quality. Thus,

our proposed scheme not only can concurrently compress and encrypt a plain image, but also generate cipher image

with high quality to ensure visual security. With these significant properties, our proposed scheme has the potential to280

satisfy the requirements of visual security, compression ratio and reconstruction quality in practical applications.

4.2. Reconstruction Quality Against Compression Ratio

The quality of the reconstructed image is highly related to the compression ratio. To investigate the relationship

between the reconstruction quality and compression ratio CR, we simulate our scheme using two different construction

methods in the inverse operation of the PCS, namely the OMP and SL0. The experiment results show that the best285

reconstruction quality can be achieved when the parameters of CBAT are set as θ = 0.2576, ω = 1.265 in OMP, and

are set as θ = 0.3445, ω = 1.404 in SL0. The plain image are selected as the “Barbara”, “Airplane”, “Girl” and

“Lena”, and the compression ratio is set as CR = {0.1, 0.2, · · · , 0.8}.
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Figure 6: The PSNR values between the reconstructed and plain images with different CR and different reconstruction methods. (a) Images

“Barbara” and “Airplane”; (b) Images “Girl” and “Lena”.

Fig. 6 shows the PSNR values between the reconstructed and plain images with different CR and different re-

construction methods. From these figures, we can draw that when the CR is smaller than 0.5, the SL0 method can290

reconstruct the images with higher quality than the OMP method. In the contract, when the CR is bigger than 0.5, the

OMP is more effective. Thus, the OMP reconstruction is more suitable for the light compression applications while

the SL0 is more suitable for the heavy compression applications.

4.3. Carrier Image Against Reconstructed Image

Here, we test the performance of the proposed scheme for encrypting a plain image with different carrier images.295

Fig. 7 shows the visual quality of the cipher images and the reconstructed images using the images “Bridge”, “Pep-
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pers”, “Jet” and “Baboon” as the carrier images, respectively. The plain image is the image “Lena”. One can see that

with different carrier images, the cipher images always have high visual quality and are similar to the corresponding

carrier images. Besides, the reconstructed images can achieve a similar visual quality for different carrier images.

(a) (b) (c) (d)

Figure 7: The quality of the reconstructed images against different different carrier images. (a)-(d) are four independent experiments, where the

first, second and third rows are the carrier images, cipher images and reconstructed images, respectively.

To qualitatively test the effects of the carrier images, we calculate the PSNR and MSSIM values of the cipher300

images and the reconstructed images and Table 2 shows calculation results. As can be observed, all the PSNR and

MSSIM values between the reconstructed and plain images are the same for different carrier images. This is because

the embedding process is a completely reversible operation, the selections of the carrier images cannot affect the

quality of the reconstructed image. These indicate that the proposed scheme is robust to the carrier image. Many

similar schemes don’t have this property and their performance highly depends on the selections of the carrier images.305

Our proposed scheme can overcome this weakness and one is flexible to select any digital image as the carrier image

to achieve a high performance.
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Table 2: The quality of the cipher and reconstructed images affected by different carrier images, where the plain image is the image “Lena”.

Carrier Cipher images Reconstructed images

image PSNR(dB) MSSIM PSNR(dB) MSSIM

Bridge 40.9293 0.9973 35.3992 0.9658

Peppers 40.9236 0.9918 35.3992 0.9658

Jet 40.9186 0.9945 35.3992 0.9658

Baboon 40.9278 0.9968 35.3992 0.9658

5. Security Analysis and Performance Comparison

This section analyzes the security level of the proposed encryption scheme and compares its performance with

some newly developed schemes.310

5.1. Key Security Analysis

An effective image encryption algorithm should have large enough key space to resist brute-force attack, and the

ideal key space should be bigger than 2100 [44]. The secret key in our proposed scheme consists of 256 bits and its key

space is 2256, which is sufficient to satisfy the requirement of key space. Meanwhile, the secret key should be highly

sensitive in both the encryption and decryption processes.315

To test the sensitivity of the secret key, a secret key K1 is randomly generated to encrypt the plain image “Lena”

and subsequently embed the secret image into a carrier image. By randomly changing one bit of the K1 in different

positions, three new secret keys K2,K3,K4 are obtained as follows.

K1 =7A09E5F4B5241E49B12CD5521E085A87F414A078E51C08D14535B487CBB3347A0,

K2 =7A09E5F4B5241E49B12CD5521E085A87F414A078E51C08D14535B487CBB3347A1,

K3 =7A09E5F4B5241E49B12CD5521E085A87F414A078E53C08D14535B487CBB3347A0,

K4 =7A09E5F4B5241E4BB12CD5521E085A87F414A078E51C08D14535B487CBB3347A0.

The four secret keys are separately used to decrypt a same cipher image, and Fig. 8 shows the decryption results.

As can be seen, the decryption results using these incorrect secret keys are totally different with that using the correct

secret key. Without secret key, one can’t get any useful information about the plain image. Besides, the number of

pixel change rate (NPCR) [45] is used to calculate the difference between the reconstructed images decrypted by the

correct and incorrect keys. For two images O1 and O2 with the same size M × N, their NPCR is defined as320

NPCR =

∑M
i=1
∑N

j=1 δO1(i, j),O2(i, j)

MN
× 100%, (26)

where δO1(i, j),O2(i, j) is 0 if O1(i, j) = O2(i, j); otherwise it is 1. The NPCRs between the correct reconstructed image

in Fig. (a) and incorrect reconstructed images in Figs. (b)-(d) are 0.9986, 0.9985 and 0.9987, respectively. This

demonstrates that the proposed scheme has a high sensitivity on the secret key.
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Figure 8: Key sensitivity analysis. Decryption results with (a) correct secret key K1 and (b)-(d) three incorrect secret keys K2,K3,K4.

In our proposed algorithm, the secret key is used to generate the measurement matrices and parameters for matrix

coding, and different secret keys can result in totally different measurement matrices. However, since all the generated325

measurement matrices can satisfy the restricted isometry property, the reconstruction quality is almost the same for

different measurement matrices. Thus, the reconstruction quality is stable for different secret keys. To test this

property, we encrypt the image “Lean” using four different secret keys and the PSNRs between these generated

four reconstructed image and the original image are 35.4398, 35.4617, 35.4602 and 35.3976, respectively. This

experimentally indicates that the reconstruction quality is stable for different secret keys.330

5.2. Histogram Analysis

The histogram of an image can directly reflect its statistical properties. For a natural image, its histogram usually

has many patterns and thus one can obtain much useful information from it. From the information theory, one can get

the least information when all the pixels distribute uniformly. Thus, an effective encryption algorithm should have the

ability to generate secret images with uniform-distribution. Here, we use information entropy to measure the pixel335

distributions of the secret images, and the entropy H of a signal s is calculated as

H(s) = −
n∑

i=0

P(si) log2 P(si) (27)

Where P(si) is the probability of the ith possible value si. For an 8-bit grayscale image, n is 255 and the maximum

entropy is 8 when the pixels are absolutely uniform-distributed.

We successively subject images “Peppers” and “Lena”, “Baboon” and “Girl”, “Jet” and “Airplane” to the proposed

scheme. Fig. 9 shows the histograms of plain images and their secret images, and it is clear that the histograms of the340
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Table 3: The distances of histogram intersection between the carrier and cipher images.

Plain images Peppers Baboon Jet

Carrier images Lena Girl Airplane

Distance 0.9713 0.9613 0.9580

plain images have some patterns while the histograms of the secret images are uniform-distributed. One cannot get

any useful information from the histograms of secret image. As for the information entropy, all secret images have

the entropy that is very close to 8.

To achieve a higher security level, the cipher images are expected to have similar visual effects with the carrier

images. Fig. 10 shows the histograms of the carrier images and their corresponding cipher images. One can see that345

the visual effects and histograms between the carrier image and its cipher image are quite similar. To qualitatively

test the difference between the carrier and cipher images, the histogram intersection [46] is used to describe their

similarity. For two histograms X and Y with N bins, their distance of histogram intersection is defined as

HI(X,Y) =

∑N
k=1 min(Xk,Yk)
∑N

k=1 Yk

. (28)

A larger value means bigger similarity of the two histograms. Table 3 shows the distances of histogram intersection

between the carrier images and cipher images. One can see that all the distances of histogram intersection are close350

to 1. This demonstrates the high similarity between the carrier images and its cipher images.

5.3. Adjacent Pixel Correlation

A natural image has strong correlation among the adjacent pixels. This correlation can benefit to the reconstruction

of original image without secret key. Thus, a secret image is expected to have weak correlation among the adjacent

pixels. Here, we evaluate the correlation of adjacent pixels using correlation coefficient. To calculate the correlation355

coefficient of an image, 3000 pixels are randomly selected in the image, and then the correlation coefficients between

these pixels with their adjacent pixels in horizontal, vertical and diagonal direction are calculated.

Assume X = {xi}3000
i=1 and Y = {yi}3000

i=1 are two sequences of pixels and every pair (xi, yi) are adjacent pixels, the

correlation coefficient of X,Y can be calculated as

CCXY =
Cov(X,Y)
σXσY

, (29)

where σX donates the standard deviation of X and Cov(X,Y) is the covariance of X and Y . Fig. 11 plots the adjacent360

pixel pairs of the plain, secret, carrier and cipher images, and Table 4 shows the numeral results. The used plain image

is the image “Lena” and carrier image is the image “Jet”. As can bee seen, the adjacent pixel pairs of the secret image

are uniformly distributed in the whole phase plane, which is shown in Fig. 11(b), and their correlation coefficients

are close to 0. This indicates that the adjacent pixels in the secret images have weak correlation. Besides, the cipher

image has similar correlation coefficients with the carrier image, which implies the good similarity between the cipher365

and carrier image.
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Figure 9: Histogram analysis about the plain images and their corresponding secret images. Pictures in these four columns represents plain images,

histograms of plain images, secret images and histograms of secret images, respectively. The entropies of these three plain images are 7.5715,

7.3579 and 7.4778, while the entropies of their secret images are 7.9973, 7.9970 and 7.9976 respectively.

Table 4: Correlation coefficients along the horizontal, vertical and diagonal directions in the plain, secret, carrier and cipher images.

Plain image Secret image Carrier image Cipher image

Horizontal 0.9726 -0.0005 0.9729 0.9702

Vertical 0.9841 0.0173 0.9764 0.9716

Diagonal 0.9609 0.0007 0.9567 0.9493
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Figure 10: Histogram analysis about the carrier images and their corresponding cipher images. Pictures in these four columns represents carrier

images, histograms of carrier images, cipher images and histograms of cipher images, respectively.
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Figure 11: Adjacent pixel pairs along the horizontal, vertical and diagonal directions in the (a) plain image, (b) secret image, (c) carrier image and

(d) cipher image.
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5.4. Ability of Resisting Noise and Data Loss

Since almost all the transmission channels are noise channels, the cipher images should have the strong ability

to resisting noise and data loss. This indicates that even a cipher image is blurred by the noise or has data loss,

the decryption process can still recover the most information of the original image. Here, we test this ability of our370

proposed scheme.

Fig. 12 shows the experimental results with different percentages of data loss and salt and pepper noise. The

image “Girl” is used as the plain image while the image “Jet” is used as the carrier image. Firstly, encrypt the plain

image using the carrier image. Then, cause a cropping to the cipher image or blur the images. Finally, decrypt the

cipher images with the correct key. One can see that the reconstructed images are still meaningful and readable. This375

indicates that even the data of the cipher image is changed in a certain level, the proposed scheme can still recover

most information in the original image. Thus, the proposed scheme has a good robustness against noise pollution and

cropping attack.

(a) (b) (c) (d) (e)

Figure 12: Simulation results for the ability of resisting data loss and noise. The first row shows the cipher images, while the second row shows the

corresponding reconstructed images. (a) the original cipher image; (b) a 32 × 32 block cropping; (c) a 64 × 64 block cropping; (d) 0.1% salt and

pepper noise; (e) 1% salt and pepper noise.

5.5. Efficiency Analysis

The fast increment of digital images requires high efficiency to the encryption process. Here, we theoretically380

analyze the time complexity of our proposed scheme and experimentally test its speed. Suppose the plain image is

of size N × N, the secret image is of size M × N, and the label ci in subsequently description represents a constant

number. In the encryption stage, the total time complexity for the SWT, 2D cat map confusion and CBAT is O(c1N2).

For PCS sampling, time mainly costs in the generation of measurement matrices, and the total time complexity is

O(c2N2 log(N)). Since the quantification and diffusion are the linear operations, their time complexity is O(c3MN).385

22

                  



In the embedding stage, because the generating and sorting of chaotic sequences require a proceeding time, the

time complexity for the matrix encoding in the embedding stage is O(c4N2 log(N2)). Among above complexities,

O(N2 log(N2)) has the maximum magnitude, which will determine the actual running time of our proposed encryption

scheme. Thus, the total computational complexity of encryption process is O(cN2 log(N2)). Meanwhile, the time

complexity in the decryption process is highly determined by the reconstruction method.390

To test the actual running time, the experiment is performed on a computer with Inter(R) Core(TM) i7-8700 @

3.2GHz. Table 5 lists the encryption and decryption times for images with different sizes. It can be observed that

the average encryption times is 0.0763s, 0.3328s and 1.9620s for images with different size 256 × 256, 512 × 512

and 1024 × 1024 respectively. This is roughly consistent with the theoretical results. On the other hand, the average

decryption times are 0.3144s, 2.0590s and 52.7013s for images with different size 256×256, 512×512 and 1024×1024.395

With the increment of image size, the running time of decryption process grows fast. Thus, our proposed encryption

scheme can achieve high encryption efficiency when the size of plain image is not large.

Table 5: The encryption and decryption times (second) of our proposed scheme for images with different sizes.

Image size Lena Girl Peppers Baboon Barbara Airplane Average

Encryption time

256 × 256 0.0747 0.0755 0.0776 0.0758 0.0760 0.0781 0.0763

512 × 512 0.3472 0.3374 0.3283 0.3294 0.3283 0.3264 0.3328

1024 × 1024 2.0319 1.9229 1.9723 1.9535 1.9510 1.9403 1.9620

Decryption time

256 × 256 0.2805 0.3675 0.3881 0.2937 0.2798 0.2766 0.3144

512 × 512 2.0931 2.0913 2.0423 2.0465 2.0243 2.0566 2.0590

1024 × 1024 53.6228 52.0911 49.9373 50.5455 49.9368 60.0746 52.7013

5.6. Comparison with Latest Schemes

To show the superiority of our proposed encryption scheme, we compare it with some other latest CS-based

encryption schemes introduced in [28, 47, 48, 49, 50, 24, 29, 26]. The comparisons are performed from the aspects of400

the quality of the reconstructed image, the quality of the cipher image, and the efficiency. To provide a relatively fair

comparison, the results of the competing schemes are all directly referenced from the original literatures.

The quality of the reconstructed image is the most important performance in an image encryption algorithm.

Table 6 shows the comparisons of the PSNR values between the plain image and the reconstructed images by different

encryption schemes. Since the results in [28, 49, 26] are shown in graphs, we estimate their PSNR values from the405

graphs. The N/A indicates that the value was not provided in the related literatures. As can been seen, under the same

compression ratio CR, the proposed scheme can achieve the largest PSNR values for different images. This indicates

that the reconstructed images by the proposed scheme have the highest quality. Note that our algorithm has a different

reconstruction quality for a same image with different sizes. This is because our algorithm uses an adaptive way to
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Table 6: Comparisons of the PSNR values between the plain and reconstructed images in different encryption schemes.

Images CR [28] [47] [48] [49] [50] [24] [29] [26] Proposed

Lena512
0.25 29.0562 N/A N/A 28.5 31.4240 N/A 33.4204 28.5 35.3992

0.5 35 N/A N/A 33.5276 32.9660 34.5560 N/A 33 38.4171

Lena256
0.25 N/A 26.5600 26.0600 N/A N/A N/A N/A N/A 29.3408

0.5 N/A 29.8300 29.8200 N/A N/A N/A N/A N/A 35.4647

Peppers
0.25 30.2 N/A N/A 28 30.6809 N/A N/A N/A 34.7013

0.5 34 N/A N/A 33 31.9825 31.5132 N/A N/A 37.3215

calculate the sparsity (shown in Eq. (6)) and the sparsity is related to the image column. The sparsity is different when410

two images have different sizes.

The cipher image in a visually secure image encryption scheme is expected to have high quality. We also compare

the quality of the cipher images between our proposed scheme with the visually secure schemes introduced in [28,

37, 29]. Table 7 shows the comparisons of the PSNR and MSSIM values between the cipher and carrier images in

different encryption schemes. One can see that the PSNR values of our proposed scheme for different images all415

approximate to 40.90 dB, which are much larger than the PSNR values of other encryption schemes. Besides, the

MSSIM values of our proposed scheme are also larger than that of the other schemes. These demonstrate that our

proposed scheme can generate a cipher image that is quite similar with the carrier image.

Table 7: Comparisons of the PSNR and MSSIM values between the cipher and carrier images in different encryption schemes.

Plain images Carrier images
[28] [37] [29] Proposed

PSNR(dB) MSSIM PSNR(dB) MSSIM PSNR(dB) MSSIM PSNR(dB) MSSIM

Lena Peppers 18.5136 0.6726 35.1347 N/A 32.3513 0.9257 40.9115 0.9917

Jet Baboon 23.3967 0.6991 36.4906 N/A 37.8967 0.9833 40.9286 0.9967

Brain Cameraman 24.8700 0.6488 35.3534 N/A 34.8967 0.9381 40.9421 0.9602

Girl Airplane 28.2318 0.7021 36.2169 N/A 36.1125 0.9666 40.9335 0.9895

Barbara Bridge 25.2321 0.7337 36.1070 N/A 35.5629 0.9783 40.9233 0.9973

Average 24.0488 0.6913 35.8692 N/A 35.2058 0.9584 40.9278 0.9871

Finally, we compare the encryption and decryption efficiencies between our proposed scheme and schemes intro-

duced in [28, 47, 48, 24, 29]. The images “Finger” and “Baboon” with size 256 × 256 are used as the plain images.420

Table 8 shows the encryption and decryption times of different encryption schemes, respectively. The results show that

the encryption and decryption speeds of our proposed scheme are much faster than the other five schemes, indicating

the high efficiency of the proposed scheme.
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Table 8: Comparisons results of encryption and decryption times (second) in different encryption schemes.

Schemes
Finger256 Baboon256 Average

Encryption Decryption Encryption Decryption Encryption Decryption

[28] 0.1159 2.2295 0.1181 2.3325 0.1170 2.2760

[47] 0.3356 1.5216 0.3319 1.5342 0.3333 1.5279

[48] 0.4536 1.1374 0.4607 1.1413 0.4572 1.1393

[24] N/A N/A 0.4296 0.9544 0.4296 0.9544

[29] 0.1544 2.2489 0.1523 2.2870 0.1533 2.2679

Proposed 0.0731 0.2860 0.0683 0.3041 0.0707 0.2950

6. Conclusion

This paper proposed a visually secure image encryption scheme using adaptive-thresholding sparsification and425

PCS techniques. The scheme includes the encryption and embedding stages. The encryption stage first decomposes a

plain image using SWT and scrambles the image using the 2D cat map, and then samples the scrambled image using

PCS with a threshold for each column, and finally quantifies and diffuses the image to obtain a secret image. The

embedding stage embeds the secret image into a carrier image using the matrix encoding. The adaptive-thresholding

sparsification can greatly improve the quality of the reconstructed image by utilizing the SWT and CBAT. The PCS430

with random-order Bernoulli random matrices is adopted to enhance the processing efficiency. Besides, the matrix

encoding technique can result in superior visual effect of the cipher image and doesn’t affect the quality of the re-

constructed image. Experiment results demonstrate the high security and strong robustness of our proposed scheme.

Comparison results show that our proposed scheme can achieve better performance than some other latest schemes

in the quality of the reconstructed and cipher images, and the processing efficiency. In future work, we will aim to435

further improve the efficiency and reconstruction performance by performing the sampling and reconstruction using

deep learning model.
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